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Abstract

Harmonic fields have been shown to provide effective guidance for a number of geometry processing problems. In this paper,
we propose a method for fast updating of harmonic fields defined on polygonal meshes, enabling real-time insertion and deletion
of constraints. Our approach utilizes the penalty method to enforce constraints in harmonic field computation. It maintains the
symmetry of the Laplacian system and takes advantage of fast multi-rank updating and downdating of Cholesky factorization,
achieving both speed and numerical stability. We demonstrate how the interactivity induced by fast harmonic field update can be
utilized in several applications, including harmonic-guided quadrilateral remeshing, vector field design, interactive geometric detail
modeling, and handle-driven shape editing and animation transfer with a dynamic handle set.
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1. Introduction

Much work on geometry processing centers around the speci-
fication, computation, and utilization of functions and operators
defined on surfaces. These surfaces are predominantly mod-
elled in the discrete setting using meshes. A variety of functions
and functional operators defined on meshes have been stud-
ied, laying the foundation and driving numerous applications
in mesh processing. Some of these fundamental geometric ap-
plications include interpolation, sampling, filtering, remeshing,
surface mapping, and many more.

We are interested in a particular class of functions on meshes
— harmonic functions [2]. A harmonic function defines a
scalar- or vector-valued field, thus it is also called a har-
monic field. Harmonic fields can be defined as solutions to
Laplace’s equation with certain boundary conditions. In this
paper, we consider boundary conditions of the Dirichlet type.
Over the discrete manifold surface of a mesh, harmonic fields
can be computed by solving a linear system set up by a dis-
crete Laplacian-Beltrami operator, incorporating boundary con-
ditions imposed at a set of sites. Site is a general term we use
to refer to the locations of attributes which specify the bound-
ary constraints of a harmonic field. Certain desirable properties
of harmonicity, such as smoothness and concentration of lo-
cal extrema only at the boundaries (the maximum principle),
make harmonic fields suitable to use in a number of applica-
tions [1, 9, 11, 20, 29, 33, 37, 41].

Depending on the application, a site for a harmonic field
can be a control handle in mesh deformation [1, 41], a feature
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point for shape matching [37] or morphing [20], a boundary or
other constraint point for mesh parameterization [11, 14, 22],
or a user-specified critical point in harmonic-guided quad-
remeshing [9, 29, 33]. Common to all of these applications is
the effective guidance provided by the choice of sites and their
resulting harmonic fields. As site constraints directly influence
results (see Figure 1), to be able to provide immediate visual
feedback on the guidance fields, while inserting, deleting, or
moving these constraints, can greatly improve quality control
and design efficiency.

Most previous use of harmonic fields has been restricted to
the static setting [1, 9, 11, 20, 29, 33, 37, 41]. When process-
ing large mesh models with a dynamic set of sites, computing
harmonic fields can be a major bottleneck, impairing interactive
applications. Fisher et al. [12] propose interactive design of har-
monic vector fields which allows dynamic change of constraint
vectors. However, as we will discuss later, directly extending
their method of constraint enforcement to scalar fields will lead
to bi-harmonic rather than harmonic fields. Bi-harmonic fields,
while preferred by several applications, are undesirable in oth-
ers, such as handle-based shape deformation, since local ex-
trema may be present at locations other than the boundaries.

Our main contribution is a method for fast updating of har-
monic fields, both scalar and vector valued, under dynamic site
conditions. Note that the same technique also applies to bi-
harmonic fields. We utilize the penalty method [10, 36, 45]
to enforce constraints which leads to approximate solutions to
the Laplace equation. With suitably chosen penalty weights,
the approximation error of the obtained solution is negligible.
Compared to alternative formulations and execution of har-
monic field computation, including direct elimination [13], sub-
stitution [9], and multi-grid solver [26], our method maintains
the symmetry of the Laplacian system and takes advantage of
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(a) Two sites. (b) Eight sites. (c) Thirteen sites.

Figure 1: Iso-contour plots of harmonic fields over the high-genus children model (304K vertices), where red dots mark the chosen sites. Iso-contour strips are
colored via linear interpolation between blue (value 0) and yellow (value 1). Updating time is less than one second, allowing for exploration of varying design
choices in real time.

the state-of-the-art algorithm of updating1 and downdating of
Cholesky factorization [7], allowing for real-time updating of
solutions to constrained Laplacian systems.

We demonstrate the utility of interactive harmonic field up-
date in a number of applications. These include harmonic-
guided quad-remeshing, vector field design, interactive geomet-
ric detail modeling, and handle-driven shape editing and anima-
tion transfer with a dynamic handle set. In all these examples, a
user is able to explore different design options guided by imme-
diate visual feedback in real time, while working with hundreds
of dynamic sites at a time, on very large mesh models.

2. Related works

There have been many uses of harmonic fields in geome-
try. In the volumetric setting, Joshi et al. [19] use harmonic
coordinates for space deformation and Martin et al. [23] use
harmonic functions for volumetric parameterization and trivari-
ate B-spline fitting. More frequent use of harmonic fields still
lies in surface processing. In handle-driven surface deforma-
tion, both the construction of reduced deformation models [1]
and transformation propagation [1, 41] have utilized scalar har-
monic fields. Interactive shape editing is achievable for large
models since the reduced model and the harmonic fields can
be pre-computed and reused during an editing session. How-
ever, when the handle set changes, the required recomputation
of harmonic fields hinders performance.

Dong et al. [9] trace the integral lines of the gradient and co-
gradient of a harmonic field for quad-remeshing, where user-
specified sites serve as allowed singularity points. Tong et
al. [33] compute two piecewise smooth harmonic functions
whose iso-lines provide a quad-tiling. The key feature of
their approach is an extension to the discrete Laplacian oper-
ator to allow line-type singularities and singularities with frac-
tional indices, leading to more design flexibility. For surface-
based shape correspondence, corresponding harmonic fields
computed from matching sites on the two surfaces induce the

1Note that “updating” of Cholesky factorizations is a specific term in its
relevant literature and should not be confused with the general use of the word
“update”; the distinction should be clear from the context.

mapping. Such examples include harmonic maps [11], feature-
based non-rigid 3D registration [37], shape morphing [20], and
animation transfer [41]. None of these applications allow up-
dating of harmonic fields under dynamic site conditions.

To compute harmonic fields, one solves a linear system de-
fined by the Laplacian-Beltrami operator, while incorporating
hard constraints at the sites. Direct elimination [13] leads to
a symmetric system to which Cholesky factorization applies.
However, it is difficult to update the factorization when the set
of sites change. An alternative is substitution [9], which results
in a non-symmetric system. A multi-grid solver [26] can be ap-
plied and it is efficient, however there is no known fast scheme
for handling dynamic sites. James and Pai [18] take the capac-
itance matrix approach to update LU decomposition. However,
its efficiency is far from what can be accomplished by updating
Cholesky factorization [5, 6, 7].

Sorkine et al. [31] enforce soft constraints at the sites in
their progressive construction of geometry-aware bases. Their
weighted least-squares (wLSQ) fitting solution, while smooth
and suitable for shape approximation, is generally not a har-
monic function. Instead, it is bi-harmonic which involves the
bi-Laplacian, corresponding to a variational solution to the min-
imization of thin-plate energy [21]. On the other hand, the
resulting normal equation is a symmetric linear system which
admits efficient Cholesky and supports updates which involve
adding a new row to the system. This is essentially equivalent
to the rank-1 updating in [5].

Works on texture synthesis on surfaces [28, 34, 39], quad-
remeshing [9, 33], and non-photorealistic rendering [15] have
relied on designated vector fields on a given mesh. Their fo-
cus has been on how to obtain results based on a given vec-
tor field, which typically results from user input. A recent and
thorough investigation into generic vector field design is due
to Zhang et al. [43]. A variety of field editing operations are
supported. Vector flow initialization, rotation, and reflection
are per-vertex operations and do not require solving a system.
Flow smoothing inside a given region, which is later utilized
for singularity movement and pair cancellation, is carried out
by solving a fresh constrained Laplacian equation using a bi-
conjugate solver each time. None of these works addressed the
problem of interactive field update or exploration.
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Most relevant to our work, Fisher et al. [12] compute har-
monic vector fields by interpolating discrete differential 1-
forms given a sparse set of wLSQ constraints on mesh edges.
The same method can work on 0-forms with wLSQ constraints
on vertices to obtain a scalar field. However, this leads to
the same bi-Laplacian system as in [31]. To facilitate interac-
tive vector fields design, Fisher et al. [12] utilize incremental
updating of Cholesky factorizations [5, 6]. Our method ex-
ploits a more efficient updating/downdating method based on
the state-of-the-art dynamic supernodal algorithm of Davis and
Hager [7], allowing for insertion/deletion of larger sets (up to
hundreds) of sites on a dense mesh in real time.

3. Harmonic fields and constraints handling

Let u be a harmonic function, a solution to the Laplace
equation ∆u = 0 subject to Dirichlet boundary conditions.
We regard u as a scalar function for now; these functions are
harmonic 0-forms following Gu and Yau [14]. For vector-
valued functions, each vector component can be treated sepa-
rately. In the manifold setting, ∆ is the Laplace-Beltrami op-
erator. On a triangle mesh surface, ∆ can be discretized in
several ways [24, 38], sometimes resulting in a non-symmetric
Laplacian matrix. We adopt the symmetric operator first de-
rived by Pinkall and Polthier [27], since it leads to symmetric
and positive-definite linear systems when computing harmonic
fields, allowing for fast Cholesky factorization. For a closed
manifold triangle mesh, the matrix is given by L = D −W. W
is defined by the well-known cotangent weights:

Wi j =
1
2

(cotαi j + cot βi j),

where αi j and βi j are opposite angles to edge (i, j) in the mesh
and if (i, j) is not an edge, Wi j = 0. The matrix D is a diagonal
matrix of the row sums of W.

Denote by S ⊆ {1, 2, . . . , n} the index set for the sites. The
site constraints dictate that u(i) = ui = si for all i ∈ S , where si

is the prescribed value of the harmonic field at site i. Different
ways to incorporate constraints into the Laplace equation lead
to different linear systems. Direct methods are often used to
solve the system since factorization of the system matrix can be
reused for different constraint values at the sites. However, if
the site locations change, the factorization is no longer appli-
cable. Re-factoring the system is generally time-consuming. A
better option is to update, for which the choice of methods to
enforce site constraints is critical.

We compare three commonly used methods for constraint
handling in solving partial differential equations (PDEs), e.g.,
via the finite element method (FEM), and show that the penalty
method is the best choice in terms of efficiency, stability and
support for factorization updates.

Direct elimination. This method [13] eliminates from the orig-
inal system matrix the variables corresponding to the site ver-
tices with known constraints. The unknown harmonic field val-

ues are computed by solving the re-arranged system,[
LS̄ S̄ LS̄ S
LS S̄ LS S

] (
uS̄
uS

)
=

(
0
s

)
,

where uS̄ is the vector of unknowns, uS = (ui)T
i∈S the vector of

site vertices, and s = (si)T
i∈S the vector of corresponding pre-

assigned site constraints. LS̄ S̄ ,LS̄ S ,LS S̄ ,LS S are correspond-
ing block matrices in the Laplacian L; LS̄ S = LS S̄ . The solution
is uS̄ = −L−1

S̄ S̄
LS̄ S uS .

Since the modified system matrix LS̄ S̄ is symmetric, efficient
Cholesky factorization can be applied. However, when the set
of sites change, so does the set of unknowns. It is difficult to
update an existing Cholesky factorization since the structure of
the system matrix changes with the unknowns.

Substitution. This method [9] does not eliminate any un-
knowns. It substitutes the diagonal element of each row cor-
responding to a site with 1 and other elements in the row with
0. Meanwhile, the corresponding entry of the right-hand side
vector is substituted with the constraint value. This results in
the linear system Au = b, where

Ai j =


Li j if i < S ,
1 if i ∈ S and j = i,
0 if i ∈ S and j , i.

bi =

{
0 if i < S ,
si if i ∈ S . (1)

This sparse system is no longer symmetric and should be solved
via LU decomposition, which is less efficient than Cholesky.
More importantly, although an algorithm for updating LU fac-
torization with a change of site locations is known [18], the
state-of-the-art updating algorithm coupled with the supernodal
method is available only for Cholesky factorization; this is sig-
nificantly more efficient than updating of LU factorization.

Penalty method. This method finds extensive use and leads to
good results in solving constrained variational problems [36,
45]. In computer graphics, it has appeared in shape approxi-
mation [30], vector field design [12], and rigid body simulation
for fast and stable contact handling [10]. Other applications
are found in solving PDEs for fluid simulation and physically-
based deformable models. Here we show its effectiveness in
constraint handling and computation for harmonic fields.

Roughly speaking, the penalty method converts a constrained
optimization problem into an unconstrained one. Instead of
minimizing the original objective function, the penalty method
minimizes a weighted sum of this objective and a quadratic
penalty term involving the constraints. A well-known example
is the least-squares mesh of Sorkine and Cohen-Or [30],

u = argminx{||Lx||2 + α
∑
i∈S

|xi − si|
2}

= argminx{||Lx||2 + ||P1/2(x − b)||2}, (2)

where L is the unconstrained Laplacian matrix defined at the
start of this section, b is defined as in (1), and P is the diagonal
penalty (weight) matrix

Pi j =

{
α if i ∈ S and i = j,
0 otherwise.
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Least-squares meshes minimize a weighted sum of the 2-norm
of the Laplacian and the penalty term. The penalty factor, α, is
used to tweak the importance of constraint satisfaction. Differ-
entiating (2), we obtain the linear system

(LTL + P)u = (L2 + P)u = Pb. (3)

Note that we adopt a symmetric L, thus LTL = L2. We see
that the above yields a bi-harmonic solution, corresponding to
the minimization of the thin-plate energy [21]. It is also the
case when using the method of Fisher et al. [12], interpolating
0-form with least-squares constraints, to compute scalar fields.
To obtain constrained harmonic functions, we instead minimize
the membrane energy [21],

u = argminx{
1
2

xTLx +
1
2
||P1/2(x − b)||2},

leading to the linear system

(L + P)u = Pb. (4)

It can be shown that the solution to (4) converges to that of the
original constrained membrane energy minimization as α ap-
proaches infinity, as long as matrix P is singular. This is the
case for us as the number of sites is smaller than the total num-
ber of mesh vertices (also the dimensionality of L). While for
the penalty weight, we choose α = 1.0×108 for all the examples
demonstrated in this paper.

The penalty method has several advantages over the other
two alternatives. First, in contrast to substitution, the systems
in (3) and (4) are symmetric which admit fast Cholesky fac-
torization. Second, the method does not change the set of un-
knowns, in contrast to direct elimination. In fact, it maintains
the zero-nonzero structure of the system matrix for different
sets of sites. Third, the addition of the diagonal penalty matrix
in (4) can only improve the conditioning of the system matrix
and hence its numerical stability. Last but not least, constraint
handling via the penalty method facilitates fast Cholesky updat-
ing/downdating [7].

Although the use of penalty can only provide approximate
constraint satisfaction, our experiments show that the resulting
approximate solution is sufficiently close to those obtained by
an exact method. In particular, maximum errors measured be-
tween solutions obtained by the penalty method and solutions
obtained by the substitution method (an exact method) are in
the order of 10−6, with our choice of the penalty weight α.

For all the applications considered in this paper, the highly
accurate solutions we obtain via the penalty method have
proved to be sufficient. Therefore, we believe that the penalty
method is the most advantageous in terms of speed, stability,
and more importantly, factorization updating. Note also that
while fast updating of Cholesky is applicable to both harmonic
and bi-harmonic solutions, we focus only on harmonic fields,
as harmonicity is desired in the applications considered.

4. Fast updating of harmonic fields

Lacking a fast harmonic field update scheme under dynamic
site conditions, previous shape processing works typically as-

Model #V |S ins| |S del| Comp. Updt.
Armadillo 173K 40 30 2.65 0.25
Armadillo 173K 200 0 2.65 0.63
Armadillo 173K 0 300 2.65 1.10
Raptor 42K 150 160 0.36 0.10
Raptor 84K 150 160 0.79 0.21
Children 304K 60 50 5.85 0.87
Children 304K 100 80 5.85 1.09
Children 304K 1 1 7.68 0.002

Table 1: Timing for re-computing (Comp.) vs. updating (Updt.) harmonic
fields, recorded in seconds. The machine is a 2.5GHz Intel Core 2 Duo PC with
2GB of RAM.

sume that the boundary sets are generally not changed fre-
quently. In practice however, design flexibility and immediate
visual feedback are vital in an interactive setting, which then
require dynamic site selection capabilities. This provides the
user with an important way to interact with harmonic fields and
hence to control shape processing behavior.

We adopt the supernodal algorithm [7] for efficient updat-
ing and downdating of a sparse Cholesky factorization. Given
an n × n sparse, symmetric positive definite matrix A with
Cholesky factorization A = GGT, supernodal methods gather
the columns of G that have an identical or similar nonzero pat-
tern into a set of dense submatrices, called supernodes of G.
Exploiting supernodal structures improves the locality for large
sparse matrices, leading to higher performance in computation
and memory access. However, most existing Cholesky updating
schemes are non-supernodal since both updating and downdat-
ing can change and invalidate the supernodes. The algorithm
we use [7] can detect supernodes dynamically as updating pro-
ceeds.

If a multi-rank modification to A can be written in the form
of a matrix addition, i.e., Ā = A + RRT for updating and Ā =

A − BBT for downdating, the supernodal algorithm of [7] can
be utilized to update/downdate the Cholesky factorization of A.
Using the penalty method, the site constraints are imposed as
an addition of the penalty matrix to the Laplacian matrix (4).
As a result, inserting/deleting site constraints can be written as
matrix additions:

L + P̄ = L + P + RRT − BBT, (5)

where the modification matrices R and B have entries:

Ri j =

{ √
α i = j ∈ S ins,

0 otherwise, Bi j =

{ √
α i = j ∈ S del,

0 otherwise,

with S ins the set of indices for newly inserted site constraints
and S del the indices of site constraints to be deleted. It is ob-
vious that the multi-rank updating procedure described above
also applies to the bi-Laplacian (3). As a result, our method
also supports fast updating of bi-harmonic fields.

The cost for update/downdate depends on the nonzero pat-
terns of L and the pattern of the update. For a rank-one up-
date/downdate operation, the cost is proportional to the num-
ber of changed entries in the Cholesky factor G, which is typ-
ically much smaller compared to the size of the mesh, leading
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(a) (b) (c) (d)

Figure 2: Iso-lines of harmonic scalar fields can be displayed to help steer quad-mesh design [9]. On high-genus models, interactive operations on site (critical
point) selections allow the user to obtain harmonic fields that are more conforming to the shape — (b) and (d). (a) and (c): fields resulting from assigning sites to
automatically extracted shape extremities.

Figure 3: Interactive design of harmonic vector fields on the Pegaso model (120K vertices). The user specifies a few constraint vectors (red arrows) over the
mesh surface. Our method updates the harmonic vector field accordingly in real time. With more constraints inserted, the resulting vector field is further refined
everywhere (see right figure). Note that we only plot a sparse set of vectors in the field to facilitate visualization; our update scheme is applied to the entire dense
set of mesh vertices.

to efficient results. Note also that diagonal modification does
not change the nonzero patterns of the system matrix and its
Cholesky factor. As a result, the supernodes do not change
and our problem can be solved even more efficiently with the
supernodal updating algorithm, since no dynamic detection is
needed. More details about the algorithm can be found in [7].
The updated harmonic field can be easily derived from the up-
dated Cholesky factorization via back substitution. An imple-
mentation of the dynamic supernodes algorithm for Cholesky is
available in the CHOLMOD package [4].

In applications such as critical point selection for quad-
remeshing [9], feature selection for shape matching [37], and
boundary selection for parameterization [11, 22, 14], the num-
ber of inserted or deleted constraints is typically small, mak-
ing the modification to the system matrix (5) low-rank. In the
case of handle-driven shape editing, although the handle re-
gions may contain a large number of vertices, harmonicity of
the field ensures that we only need to sample along the region
boundaries, as explained in Section 5.2. With our current im-

plementation, we are able to process models of sizes up to a few
hundred thousands vertices and update their harmonic fields
with up to 300 inserted and deleted sites in real time. Table 1
lists some timing statistics comparing the updating of harmonic
fields with our method and computing them from scratch after
inserting and/or deleting sites. Evidently, updating can be done
much more efficiently than re-computation, especially when the
number of changed sites is relatively small.

5. Applications and results

We present several applications and visual results to demon-
strate effective use of dynamic harmonic fields.

5.1. Interactive harmonic field design

Several surface processing applications, e.g., quad-
remeshing and texture synthesis, can benefit from the use of
harmonic fields in an interactive setting. One can build and
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Figure 4: Hierarchical editing of the raptor (84K vertices). (a) shows our deformation model with colored dots representing deformation clusters. The raptor’s head
is first raised (b), using three coarse-level handles. Then, its left hand is manipulated to grasp the right one (d)-(f), with a new set of finer-level handles inserted.
Finally, its tail is curled up (g). If all the coarse and fine-level handles were selected at the start (c), the effect of raising the head would be limited (c), unlike the one
shown in (b).

control a smooth field over a mesh surface by placing and
moving sites. In certain applications, e.g., quad-remeshing [9],
the sites are preferably placed at feature points such as shape
extremities. These extremities, e.g., the top of the children’s
heads and the wing tips of the Pegaso in Figure 2, can be
extracted automatically via Poisson [9] or average geodesic
distance fields [42] defined over a mesh. However, not all
useful features are easy to detect this way, for instance, when
extremities are merged into other parts of a shape like the feet
of the Pegaso and children models. These sites are typically
assigned manually to steer the mesh design. However, when
a model is high-genus or the number of sites is large, the
effect of site positioning on the resulting iso-lines becomes
non-intuitive, making the design difficult.

As a result, immediate visual feedback is especially useful in
interactive design of harmonic fields. Our fast updating method
allows us to provide three interactive operations: site insertion,
deletion, and movement, where the latter is implemented as a
sequence of site deletions and insertions. These operations are
all supported in real time even on a very dense mesh; see the last
row of Table 1. Figure 2 compares the harmonic fields on two
high-genus models obtained by interactive design versus those
computed with extremities extracted from Poisson fields. Note
that some recent works on quad-remeshing utilize the Lapla-
cian eigenfunctions [8, 16] instead of harmonic fields. It would
be interesting to see whether interactive control of singularity
placements is possible within such a framework.

The use of harmonic fields is not restricted to scalar-valued
attributes. Smooth tangential vector fields on surfaces have
been applied to control rendering of surfaces, e.g., in tex-
ture synthesis [34] and non-photorealistic rendering [15]. By
solving Laplace’s equation for each direction separately, our
method can compute a harmonic vector field given a set of
constraint tangential vectors. Since the harmonic vectors are
not necessarily tangential to the mesh surface away from the
constraint sites, we project them onto estimated local tangent
planes to obtain a tangential vector field that is approximately
harmonic. Although less accurate, our method can be faster
than [12] in terms of both computing and updating due to the
simple formulation and more advanced updating method we

employ. As a result, our method computes approximate har-
monic vector fields interactively and in practice, these fields
exhibit similar properties as true harmonic fields and work very
well in applications such as texture synthesis. The constraint
vectors selected through such an interactive design session can
then be used to drive a more advanced method such as [12] to
more accurately compute the final vector field. We have imple-
mented four interactive operations to facilitate interactive de-
sign of tangent vector fields: insertion, deletion, movement, and
rotation of the constraint vectors; see Figure 3.

5.2. Shape deformation with dynamic handles

In handle-driven shape deformation, harmonic fields have
been used to guide the propagation of transformations from the
manipulated handles to the rest of the shape [1, 41]. So far the
deformation model is based on harmonic fields pre-computed
for a set of prescribed handles. With our real-time harmonic
field update, dynamic handles are now possible. Dynamic han-
dles add more design flexibility and better control to interactive
editing, as the user is not constrained by a particular selection
of the handle set. Similarly, Laplacian [32] or Poisson [40]
shape editing can also benefit from our method which can up-
date the Cholesky factorization efficiently whenever the user
changes the region of interests (ROI).

In what follows, we first use hierarchical shape editing as an
example to illustrate the above point. Then we discuss site se-
lection for harmonic field computation. Finally, we describe an
improved deformation model which can be more quickly up-
dated from a renewed harmonic field, further speeding up the
use of dynamic handles.

Hierarchical shape editing. In many real-world design scenar-
ios, an editing task has to be carried out in a hierarchical man-
ner. Refer to the editing example illustrated in Figure 4. While
raising the raptor’s head is a higher-level pose change, best ac-
complished with a coarse handle set, moving its hands or fin-
gers belongs to lower-level editing, which is more suitably con-
trolled by a finer set of handles.

In general, one cannot select all the handles across the edit-
ing hierarchy at the beginning since anticipating the entire set
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of handles that will be needed is difficult. Even if this were pos-
sible, doing so would be limiting as the presence of finer-level
handles may limit the degree of freedom required to achieve
higher-level pose editing; see Figure 4(c). A coarse-to-fine ap-
proach requires finer-level handles to be inserted as editing pro-
ceeds, while these handles should be removed when we move
up the editing hierarchy. With dynamic handles, the user can
freely insert and remove handles at any time without sacrificing
interactivity.

Site selection. A handle typically encompasses a small region
of the manipulated shape, e.g., a hand of the raptor. For a dense
mesh, a single handle may contain a large number of vertices
or sites. If the number of sites to insert or remove is too large,
real-time update may not be achievable. Fortunately, harmonic-
ity of the guidance fields implies that treating all vertices in the
handle regions as sites is not necessary. It suffices to only sam-
ple along the boundaries of the handle regions. Indeed, if the
boundary points of a connected region take on a common har-
monic field value and the region contains no other sites, then the
whole region must take on that value due to the maximum prin-
ciple. In practice, we only sample dozens of boundary vertices
from each handle as sites, ensuring real-time performance.

Improved deformation model. With a renewed harmonic field
due to handle insertion or deletion, generating plausible defor-
mation over the whole mesh is still computationally demand-
ing, especially for a dense model and a non-linear approach to
handle rotations [1]. Thus the model representation needs to be
reduced so that expensive operations are only performed on the
reduced model, with results then propagated to all vertices.

An elegant reduced model utilizing harmonic fields is based
on extracting the fields’ iso-lines [1]. Our reduced model is
built by clustering sampled points with the same harmonic
value into a point set which we call a deformation cluster; see
Figure 4(a). Each set of sites corresponding to a handle is also
a cluster. Since sampling point sets is easier than extracting
iso-lines, our model is more efficient to build. To each defor-
mation cluster, we associate a rigid transformation. The mesh
is then deformed by linearly interpolating the transformations
at the deformation clusters based on a harmonic field. The clus-
ters are sampled in overlapping fashion so that transformation
propagates via points shared between neighboring clusters.

When the user drags a handle, we perform shape match-
ing [25] on the corresponding handle cluster to find the optimal
rigid motion for that handle. Due to cluster overlapping, the
other clusters obtain reasonable rigid motions, also via shape
matching. Keeping the local transformations rigid leads to
detail-preserving deformation. We replace polar decomposition
adopted by Müller et al. [25] by singular value decomposition
(SVD), so as to ensure a pure rotation factorization [17]. Pre-
computation is only needed for shape matching. For each clus-
ter, it only involves inverting a 3 × 3 matrix. This cost is neg-
ligible compared to that of Cholesky factorization and matrix
multiplications as in Au et al.[1]. Overall, combining a more
efficient reduced model and shape matching via SVD for pure

Figure 5: Deformation transfer with dynamic corresponding handles. The user
manipulates the cat, changing handles in real time. The deformations are trans-
ferred to the wolf.

rotation factorization, our deformation model can be quickly
updated from a renewed harmonic field.

5.3. Deformation transfer with dynamic handles
Harmonic scalar fields, computed on two meshes with mean-

ingful correspondence between their sites, provide a dense cor-
respondence (iso-line correspondence) for deformation transfer
between the two meshes [41, 1]. Dynamic handles can facilitate
this process. For example, if the target deformation is not satis-
factory, the user may wish to tune the source one through, say,
changing handles. In harmonic-guided deformation transfer,
changing of handles is more expensive since the harmonic fields
of both meshes must be recomputed. Our fast update scheme
allows us to apply our reduced deformation model to interactive
editing and deformation transfer with a dynamic handle set.

Similar to other works [1, 41], our method requires the source
and target shapes to have similar semantic correspondence and
initial poses to ensure semantically meaningful and visually
pleasing results. However, their sizes and shapes can be dif-
ferent. The corresponding handles on the two meshes are as-
signed interactively by the user. To avoid undesirable scaling
on the target due to possible shape differences, we only trans-
fer the rotational component of the rigid transformations and
use shape matching (Section 5.2) to compute the local transla-
tion on each deformation cluster. Figure 5 shows an interactive
deformation transfer session with dynamic handles.

5.4. Interactive geometric detail modelling
In contrast to detail-preserving shape editing, geometric de-

tail modelling changes the appearance of a surface by modify-
ing its high-frequency content. The user selects a region of in-
terest (ROI) and cuts it away, forming a hole on the surface. The
hole is filled by a smooth membrane or thin-plate base mesh
computed with respect to the boundary of the hole. All the
mesh vertices along the boundary curve serve as sites to define
the harmonic or bi-harmonic base mesh. The base mesh can
then be enriched with new geometric details, either synthesized
by sample [3] or transferred from another shape [32].

As shown in Figure 6, the user selects a region of interest
(ROI) by drawing a curve on the surface. The ROI is cut and
then filled with a harmonic membrane, having the same connec-
tivity as the original ROI. In the current experiment, the geo-
metric details are modified simply by interpolating between the
original surface over the ROI and the membrane. By changing
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Figure 6: Interactive geometric detail modeling. A part of the Bimba model
(115K vertices) is cut by drawing a curve on the surface (top row). A harmonic
membrane is computed with respect to the boundary curve to fill the cut region
and serve as the base for detail transfer. Geometric details are modified via
a morphing between the original surface and the membrane (middle figures).
When the user enlarges the boundary curve (bottom row), introducing 284 new
sites, the new membrane can be updated in only 0.23 seconds.

the interpolation weight continuously, we obtain a morphing
sequence as shown in the figure.

During interactive modelling, the ROI often needs to be
changed frequently. However, for a dense mesh, computing the
base mesh can be time-consuming. The key to note is that our
method can update the base mesh in real time, according to
the new boundary of the changed ROI, facilitating interactive
geometric detail modeling. Note that our fast update scheme
can also be applied to thin-plate base meshes since solving a
bi-Laplacian also involves Cholesky factorization, as we have
explained in Section 3.

6. Conclusion and future work

We present a method for quick updating of harmonic fields
with respect to a dynamic set of sites. The penalty method is
employed to enforce site constraints and this allows the use of
fast updating and downdating to Cholesky factorization. We
demonstrate that our method endows several surface processing
applications with effective, interactive harmonic field guidance.
The immediate visual feedback enabled by real-time dynamic
harmonic fields adds design flexibility and interactive explo-
ration to the user experience.

Our current software implementation allows us to interac-
tively update several hundred sites on moderate large meshes,
with up to several hundred thousand vertices. To alleviate the
constraint on low-rank updating to Cholesky factorization so as
to handle much larger sets of sites on even denser meshes, a
GPU implementation of the Cholesky updating algorithms [7]
is called for. In future work, we would first like to consider such
a GPU implementation using data-oriented GPU programming
models such as Nvidia’s CUDA.

Using the penalty method to enforce site constraints, the ob-
tained harmonic fields are approximate. Although these ap-

proximate solutions are highly accurate as judged by maximum
approximation errors, this does not necessarily imply that all
the theoretical properties of a harmonic filed, e.g., those related
to the number of critical points, are preserved. These issues
deserve further investigation.

Finally, as harmonic functions are almost ubiquitous in sur-
face processing, we shall look into more applications, interac-
tive or otherwise, which can benefit from dynamic harmonic
fields. One such example is harmonic-guided shape matching.
It is possible to incorporate harmonic fields into a deformation-
driven shape correspondence framework [44] to obtain a signif-
icant performance boost, as the deformation corresponding to
different sets of matching feature pairs can be obtained much
more efficiently through field updates.
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